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COMMON-PATH HETERODYNE LASER-INDUCED THERMAL ACOUSTICS

FOR SEEDLESS LASER VELOCIMETRY

ROGER C, HART', G. C. HERRING ', AYDR. JEFFREY BALLA:

Abstract. We demonstrate the use of a novel technique for the detection of heterodyne laser-induced

thermal acoustics signals, which allows the construction of a highly stable seedless laser velocimeter. A common-

path configuration is combined with quadrature detection to provide flow direction, greatly improve robustness to

misalignment and vibration, and give reliable velocity measurement at low flow velocities. Comparison with Pitot

tube measurements in the freestream of a windtunnel shows root-mean-square errors of 0.67 m/s over the velocity

range 0 - 55 m/s.

Key words. LITA, laser velocimetry, laser anemometry, laser-induced thermal acoustics

Subject classification. Experimental Fluid Dynamics .

1. Introduction. Non-intrusive optical methods for measuring fluid flow velocity are of great importance

to the experimental fluid dynamics and aerodynamics communities. However, the only optical velocimetry methods

to have found wide use, laser doppler velocimetry [1] and particle image velocimetry [2], require the introduction of

small (- 1 !am diameter) seed particles into the flow to serve as light scatterers. Seeding is not feasible in some wind

tunnels due to concerns over removal of spent seed, clogging of flow-straightening screens, or abrasion of finely

polished surfaces. Additionally, there are regions in airflows of interest, such as vortices over delta wings or behind

leading-edge slats, where useful seed concentrations are difficult or impossible to achieve. Thus a need exists tbr a

seedless laser velocimetry method. Previous work has demonstrated the potential of laser-induced thermal acoustics

(LITA) to fill this need [3-6]. However, none of the approaches employed so far for heterodyne detection appears

suitable for routine use in environmentally adverse windtunnel environments by workers who are not highly skilled

optics researchers. Here we demonstrate a novel means of implementing LITA velocimetry that has the intrinsic

stability and robustness to allow the construction of a usefttl, fieldable instrument.

2. Theory of LITA Signal Detection. LITA is a pump-probe process: a pump laser creates a periodic

perturbation in the medium, which serves to diffract the beam of a probe laser to a detector. In our apparatus the

beam of a Q-switched Nd:YAG laser operating at wavelength L:,,,,:, 1064 nm is split by a 50/50 beamsplitter to

produce two pump beams which are made to focus and cross at a single point at angle 20 = 1.4 ° by a lens (Fig. 2.1).
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Interference fringes of period A = 2,pump/2sinO are formed at the beam intersection. As the laser wavelength is not

resonant with any absorptive transition in the medium (air) the only optical interaction is electrostriction, which

creates two counter-propagating acoustic waves or gratings traveling in the _.;: direction at speed of sound vs with

respect to the medium. The acoustic wavelength is equal to the optical fringe spacing and the frequency

j)_ = vs/A is about 7.8 MHz at room temperature. The beam of the CW probe laser at wavelength kr,,,h,> = 532 nm
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Ifl(,. 2. I. Beam crossing geometry and schematic o(detection scheme. A: attenuator: B: be_onstop: C. Focal�detector plane:
L( ): h>cal oscillator beam.

is incident on the waves at the Bragg or phase-matching angle _ where A = _p,.ob,./2sind_. The signal beam is

diffracted at angle _b (Fig. 2.1) with Doppler shills Am = -_. (_ - Vs) and Am = -_-(_;,.o,, + 7s ) due to the

motion of the gratings, where _',.... is the flow velocity, _;s = Vs-_:, and _ = @ is the acoustic grating vector with

q = 2rt/A.

2.1. CoUinear Local Oscillator Method. The simplest implementation of LITA veiocimetry (not shown)

requires the introduction of a local oscillator (LO) beam collinear with the signal with the same frequency _o as the

probe. The field is

(2.1) A(t) = ALO exp(iot)+ Ase l_' (exp(i((o + Ao_ t))+ exp(i(co + Aco. t)))+ c.c.,



where Au)and A s are the real amplitudes respectively of the LO and signal beams, 13=ct v s with (z the acoustic

amplitude absorption coefficient [7], and c.c. means complex conjugate. Averaging over a time long compared to

the optical period but short compared to l!TBand integrating over the area of the beams, the time dependence of the

detected power is

(2.2) P(t)= A_o + 2ALoAse I}'[cos(A(o ,)+cos(A(o+t)],

where we assume ALo >> A s for shot-noise-limited detection and so neglect the term oc A s . Neglecting also the

DC term, the real parl fiR(G) of the Fourier transform of P(t) is a sum of four Lorentzians

(2.3)
PR(_)=2AL°AsI132 + ((_'13+A_o )2

13

* 132 )__'+ (,_+ a_

with peaks at +A_o. and +A¢o . Although the Doppler shifts are signed quantities, the detected heterodyne signal

contains information only on the absolute values. Analysis (e.g. discrete Fourier transform or time domain fitting

via Levenburg-Marquardt or Prony's method [6]) of real-valued data described by Eq. 2.2 thus allows independent

determination only of IAo_ land [Ao_, 1, yielding v s and I"FI, where vF = c_. F,.o,, is the component of flow velocity

along _.

Laboratory evaluation of this collinear LO method of implementing LITA velocimetry [6] revealed the

following disadvantages: 1) proper alignment of the LO and signal beams is difficult to achieve and maintain; 2t the

apparatus is very sensitive to vibration since the signal and LO beam must follow different paths on different optics;

3) no direct means of determining flow direction is available since only the absolute values of Ao_ and Ao)_ are

available as shown above; 4) both accuracy and precision are very poor for flow velocities less than _20 m/s due to

the difficulty of accurately discriminating the nearly degenerate frequencies tAo_ I and IAeo, l in the presence of

noise. Although various technical means of ameliorating these difficulties are available, this approach seemed

unsuitable to be the basis of a robust instrument with a useful velocity dynamic range.

2.2. Grating Demodulation with Quadrature Detection. A solution to these four problems was found

with two modifications: a non-coilinear geometry, and quadrature detection. A lens recrosses and refocuses the

signal and attenuated probe beams in plane C (Fig. 2.1.). Assuming for simplicity unit magnification, the field at C

is

(2.4) A(t) = ALo exp (i(/,7co .F-_o t))+

As e I_,exp (i(k's .F-(co + A,o )t))+



where/_Loand /_s are the wavevectors for LO and signal beams with /71.o,s = 27t/Lp,.,,h," . With /TLo -/_s = q (due

to the phase matching between pump and probe), and neglecting the term _: A_, the intensity, in plane C is then

(2.5) l(x,t) = A_.o + 2ALoAse 1_'[cos(qx + Ao) t)+cos(qx + Ao) t)],

which describes interference fringes of spatial period A traveling at speeds Am+/q = vF -- I,'s and

Am /q = v F + v_.; that is, the lens produces an image of the acoustic waves. No modulation at frequencies

Ao) and Am. would be seen by a broad-area detector (width >> A ) placed at C. However, if a series of slits (e.g.

a Ronchi ruling) parallel to the fringes with period A = 2D is placed on the surlhce of the detector (Fig. 2.2) the

modulation is recovered as bright fringes pass ahemately across transparent and opaque regions. We refer to this

detection scheme as grating demodulation. Taking advantage of the equal periodicities of the fringes and the

Ronchi ruling, the time dependence of the detected power P(t) may be written

t _ D
(2.6) P(t) = F l(x,t)dv

where F is a constant accounting for the number of fringes and the height of the beams, and a specifies the

transverse location (phase) of the ruling with respect to an arbitrary origin (Fig. 2.2). After some manipulation one

finds

(2.7) P(t) = hAT_o

- 2CALoAse-I_'(sin((p)cos{Am t)+ cos(q))sin(Am_t))

-I '--cALoAse (s,n((p)cos(Am +t)+ cos((p )sin(Am+t)),

m

\

'- AI"_

--," 2D =A + 2
a

2 ")'_
t U ...... Plato" C" in Fig. 2. l showing Rom'hi ruling (thick lines) amt one traveling [J'inge pattern.

/



where q0 = na/D and b and c are constants. Thus by shifting the ruling transverse to the optical axis (changing a)

the phase of the modulation in the signal may be varied; this is eqtdvalent to shifting the phase o/ the local

oscillator. This provides a convenient means for implementing dual-channel phase-sensitive detection with two

phases of the LO differing by 90 °, known as quadrature detection. If the converging signal and LO beams (Fig. 1)

are divided by a suitable beamsplitter so that two separate beam intersections are formed on two separate rulings and

detectors, then by setting the relative transverse shift between the rulings to A/4 both quadrature components of the

signal may be recovered simultaneously. That is, for channel P0(t) let a = 3D/2 in Eq. 2 and for channel Poo(t)

a = D, giving

(2.8) po(t)=bA_o + 2CALoAse f_t(cos(A_o t)+cos(A(o_t)),

P_o(t) = hAlo + 2CALoAs e l_'(sin(Ao) t)+ sin(A_o÷ t)_

Forming the complex signal Z(t) = P0(t) + iPgo(t), we find the real part of the Fourier transfonn now' consists of

only two Lorentzians

(2.9)
ZR (_) = 2cALoAs [ [3

.+

2 + (0_ -- Act3 )2 [_2 . )2+ (o_- A_o

with peaks at Ao) and Ao), . Thus analysis of Z(t) can recover the sign as well as magnitude of the Doppler shifts

(Fig. 2.3). For v F = 0 the spectral peaks occur at (_ = +qv s = +6%9 =-+2rtfs; as v F varies the peaks will shift

simultaneously towards more positive or more negative frequency (depending on the flow direction) but will

maintain the separation 2_oB. Flow and sound velocities are found asvF=(Ao) +Ao))/2q and

vs = (A(o. - Ao) }/2q. Note that Mach number M = v F/v s is independent of q, so if flow temperature and thus
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v s are known vF may be found without calibration of A.

This grating demodulation/quadrature detection scheme remedies the defects tbund in the collinear LO

method. Since signal and LO beams are incident on the same optics (common path), detection is intrinsicalh, stable

against both misalignment and vibration. Flow direction is tbund directly. Resolution at low velocities is greatly

improved since the frequencies Ao_ and Ato, are no longer nearly degenerate.

3. Experimental Results. A compact velocimeter employing this detection scheme was used at NASA

Langley Research Center's Basic Aerodynamics Research Tunnel to map the flow behind a rearward-facing step [8].

As part of this program, multiple comparisons of freestream velocity VLn'A (average of-350 shots) measured by

LITA with freestream velocity Vp,,ot measured by Pitot tube were acquired (Fig. 3.1). Defining error as Vp,,,,,-VuTA,

the root-mean-square error (RMSE) of this data set is 0.67 m/s. For Vpito t )" 30 m/s and for Vr,,o, =- 0, the RMSE is

< 0.4 nWs. while Ibr intermediate velocities RMSE is 0.84 m/s. Note that a velocity of 1 m/s corresponds here to a

Doppler shift of 23 kHz in a carrier frequency of 5.6 x 10_4Hz.

We have demonstrated an elegant, intrinsically stable means of performing heterodyne LITA veiocimetry with

quadrature detection that will allow the construction of a robust seedless laser velocimeter.
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